Talk@IFUSP, friday 19/10, 3pm, by Prof. Avi Pe’er

This friday, 19/10, at Auditório Norte 3pm, Prof. Avi Pe’er from Bar Ilan University, will give a talk on

The Speed Limit of Quantum Measurement (and what we can achieve if we break it…)

Homodyne measurement is a corner-stone of quantum optics. It measures the fundamental variables of quantum electrodynamics – the quadratures of light, which constitute the optical analog of position and momentum. Yet, standard homodyne, which is used to measure quadratures, suffers from a severe bandwidth limitation: While the bandwidth of optical states can easily span many THz, standard homodyne detection is inherently limited to the electrically accessible, MHz-to-GHz range, leaving a dramatic gap between the relevant optical phenomena and the measurement capability.
We recently demonstrated a fully parallel optical homodyne measurement across an arbitrary optical bandwidth, effectively lifting the bandwidth limitation completely 1. Using optical parametric amplification, which amplifies one quadrature while attenuating the other, we could measure quadrature squeezing simultaneously across a bandwidth of 55THz.
I will review the broad context of quantum measurement and will present our parametric homodyne method and results. I will then discuss two immediate applications of parametric homodyne: First, broadband Quantum Key Distribution, where many quantum channels of communication can be multiplexed over a single broadband squeezer and using a single homodyne device. Second, Squeezing-enhanced Raman spectroscopy, where the detection sensitivity can surpass the shot-noise limit with a nonlinear interferometry scheme.

• Yaakov Shaked, Yoad Michael, Rafi Vered, Leon Bello, Michael Rosenbluh and Avi Pe’er, “Lifting the Bandwidth limit of Optical Homodyne Measurement”, Nature Comm. 9, 609 (2018)

Location: Auditório Norte, IFUSP.
Date: 19/10/2018, 15:00 hs

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s